Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nat Commun ; 15(1): 45, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167725

ABSTRACT

Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.


Subject(s)
Fatty Acids, Omega-3 , Metabolic Diseases , Mice , Humans , Animals , Lipogenesis , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated , Triglycerides/metabolism , Fatty Acids , Diet, High-Fat/adverse effects
2.
Epilepsia ; 63(4): 974-991, 2022 04.
Article in English | MEDLINE | ID: mdl-35179230

ABSTRACT

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Intellectual Disability , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/genetics , Female , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Phenotype , Seizures/genetics
3.
Eur J Pediatr Surg ; 32(4): 316-320, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34126636

ABSTRACT

INTRODUCTION: Pectus excavatum (PE) is a funnel-shaped indentation of the sternum and is the most common deformity of the chest wall. It is associated with syndromic diseases but can occur as an isolated form. Familial occurrence is assumed in up to 40% of cases, but large-scale studies are lacking. Most of the data are obtained from case reports which postulate autosomal recessive, dominant with reduced penetrance, X-linked, and multifactorial patterns of inheritance. No monogenetic cause has been identified to date. This study was designed to provide basic information on the epidemiology, family history, and comorbidity for a large cohort of isolated PE and to show that there is an inheritance pattern for PE that indicates a genetic background. MATERIALS AND METHODS: A retrospective study was done using a paper-based questionnaire for all PE patients attending two specialized centers for chest wall deformities. Patients with isolated PE were included and asked to provide information on family history and comorbidities. RESULTS: Family history was available for 78 patients. A positive family history was found in 42 patients (54%) with a total of 53 affected family members. CONCLUSION: The described family histories indicate an underlying genetic cause for PE. Identification of the genetic factors may contribute to characterize patients who are at risk of inheriting isolated PE.


Subject(s)
Funnel Chest , Thoracic Wall , Cohort Studies , Funnel Chest/etiology , Funnel Chest/genetics , Humans , Retrospective Studies , Sternum/abnormalities , Thoracic Wall/abnormalities
4.
Front Oncol ; 11: 756025, 2021.
Article in English | MEDLINE | ID: mdl-34888241

ABSTRACT

Gorlin syndrome is a genetic condition associated with the occurrence of SHH activated medulloblastoma, basal cell carcinoma, macrocephaly and other congenital anomalies. It is caused by heterozygous pathogenic variants in PTCH1 or SUFU. In this study we included 16 patients from the HIT2000, HIT2000interim, I-HIT-MED, observation registry and older registries such as HIT-SKK87, HIT-SKK92 (1987 - 2020) with genetically confirmed Gorlin syndrome, harboring 10 PTCH1 and 6 SUFU mutations. Nine patients presented with desmoplastic medulloblastomas (DMB), 6 with medulloblastomas with extensive nodularity (MBEN) and one patient with classic medulloblastoma (CMB); all tumors affected the cerebellum, vermis or the fourth ventricle. SHH activation was present in all investigated tumors (14/16); DNA methylation analysis (when available) classified 3 tumors as iSHH-I and 4 tumors as iSHH-II. Age at diagnosis ranged from 0.65 to 3.41 years. All but one patient received chemotherapy according to the HIT-SKK protocol. Ten patients were in complete remission after completion of primary therapy; four subsequently presented with PD. No patient received radiotherapy during initial treatment. Five patients acquired additional neoplasms, namely basal cell carcinomas, odontogenic tumors, ovarian fibromas and meningioma. Developmental delay was documented in 5/16 patients. Overall survival (OS) and progression-free survival (PFS) between patients with PTCH1 or SUFU mutations did not differ statistically (10y-OS 90% vs. 100%, p=0.414; 5y-PFS 88.9% ± 10.5% vs. 41.7% ± 22.2%, p=0.139). Comparing the Gorlin patients to all young, SHH activated MBs in the registries (10y-OS 93.3% ± 6.4% vs. 92.5% ± 3.3%, p=0.738; 10y-PFS 64.9%+-16.7% vs. 83.8%+-4.5%, p=0.228) as well as comparing Gorlin M0 SKK-treated patients to all young, SHH activated, M0, SKK-treated MBs in the HIT-MED database did not reveal significantly different clinical outcomes (10y-OS 88.9% ± 10.5% vs. 88% ± 4%, p=0.812; 5y-PFS 87.5% ± 11.7% vs. 77.7% ± 5.1%, p=0.746). Gorlin syndrome should be considered in young children with SHH activated medulloblastoma, especially DMB and MBEN but cannot be ruled out for CMB. Survival did not differ to patients with SHH-activated medulloblastoma with unknown germline status or between PTCH1 and SUFU mutated patients. Additional neoplasms, especially basal cell carcinomas, need to be expected and screened for. Genetic counselling should be provided for families with young medulloblastoma patients with SHH activation.

5.
Clin Genet ; 100(6): 766-770, 2021 12.
Article in English | MEDLINE | ID: mdl-34490615

ABSTRACT

Neurological symptoms are frequent and often a leading feature of childhood-onset mitochondrial disorders (MD) but the exact incidence of MD in unselected neuropediatric patients is unknown. Their early detection is desirable due to a potentially rapid clinical decline and the availability of management options. In 491 children with neurological symptoms, a comprehensive diagnostic work-up including exome sequencing was performed. The success rate in terms of a molecular genetic diagnosis within our cohort was 51%. Disease-causing variants in a mitochondria-associated gene were detected in 12% of solved cases. In order to facilitate the clinical identification of MDs within neuropediatric cohorts, we have created an easy-to-use bedside-tool, the MDC-NP. In our cohort, the MDC-NP predicted disease conditions related to MDs with a sensitivity of 0.83, and a specificity of 0.96.


Subject(s)
Genetic Predisposition to Disease , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/genetics , Nervous System Diseases/epidemiology , Nervous System Diseases/genetics , Age Factors , Alleles , Child , Cohort Studies , Genes, Mitochondrial , Genetic Association Studies , Genotype , Humans , Mitochondrial Diseases/diagnosis , Mutation , Nervous System Diseases/diagnosis , Phenotype , Prevalence , Prognosis
6.
Neurogenetics ; 22(4): 263-269, 2021 10.
Article in English | MEDLINE | ID: mdl-34218362

ABSTRACT

ANK3 encodes multiple isoforms of ankyrin-G, resulting in variegated tissue expression and function, especially regarding its role in neuronal development. Based on the zygosity, location, and type, ANK3 variants result in different neurodevelopmental phenotypes. Autism spectrum disorder has been associated with heterozygous missense variants in ANK3, whereas a more severe neurodevelopmental phenotype is caused by isoform-dependent, autosomal-dominant, or autosomal-recessive loss-of-function variants. Here, we present four individuals affected by a variable neurodevelopmental phenotype harboring a heterozygous frameshift or nonsense variant affecting all ANK3 transcripts. Thus, we provide further evidence of an isoform-based phenotypic continuum underlying ANK3-associated pathologies and expand its phenotypic spectrum.


Subject(s)
Ankyrins/genetics , Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Child , Humans , Loss of Heterozygosity , Male , Mutation, Missense/genetics , Phenotype , Protein Isoforms/genetics
7.
Nat Genet ; 53(7): 1006-1021, 2021 07.
Article in English | MEDLINE | ID: mdl-34211179

ABSTRACT

SPTBN1 encodes ßII-spectrin, the ubiquitously expressed ß-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal ßII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect ßII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of ßII-spectrin in the central nervous system.


Subject(s)
Genes, Dominant , Genetic Predisposition to Disease , Genetic Variation , Neurodevelopmental Disorders/genetics , Spectrin/genetics , Animals , Genetic Association Studies/methods , Heterozygote , Humans , Mice , Neurodevelopmental Disorders/diagnosis , Phenotype , Spectrin/metabolism
8.
Neonatology ; 118(4): 454-461, 2021.
Article in English | MEDLINE | ID: mdl-34237744

ABSTRACT

INTRODUCTION: Monogenic diseases play an important role in critically ill neonates and infants treated in the intensive care unit. This study aimed to determine the diagnostic yield of whole-exome sequencing (WES) for monogenic diseases and identify phenotypes more likely associated with a genetic etiology. METHODS: From March 2017 to 2020, a comprehensive diagnostic workup including WES in a single academic center was performed in 61 unrelated, critically ill neonates and infants with an unknown underlying disease within the first year of life. We conducted 59 trio-WES, 1 duo-WES, and 1 single-WES analyses. Symptoms were classified according to the Human Phenotype Ontology. RESULTS: The overall molecular genetic diagnostic rate within our cohort was 46% (28/61) and 50% (15/30) in the subgroup of preterm neonates. Identifying the genetic cause of disease facilitates individualized management in the majority of patients. A positive or negative predictive power of specific clinical features for a genetic diagnosis could not be observed. CONCLUSION: WES is a powerful noninvasive diagnostic tool in critically ill neonates and infants with a high diagnostic rate. We recommend initiating WES as early as possible due to the impact on management and family counseling. Recommendations regarding the clinical utility of WES in critically ill neonates and infants should not be based on the phenotype alone. Here, we present a clinical workflow for the application of WES for critically ill neonates and infants in an interdisciplinary setting.


Subject(s)
Critical Illness , Intensive Care Units , Genetic Testing , Humans , Infant , Phenotype , Exome Sequencing
9.
Eur J Med Genet ; 64(3): 104161, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33571691

ABSTRACT

Fibrillin-2, encoded by FBN2, plays an important role in the early process of elastic fiber assembly. To date, heterozygous pathogenic variants in FBN2 have been shown to cause congenital contractural arachnodactyly (CCA; Beals-Hecht syndrome). Classical CCA is characterized by long and slender fingers and toes, ear deformities, joint contractures at birth, clubfeet, muscular hypoplasia and often tall stature. In individuals with a severe CCA form, different cardiovascular or gastrointestinal anomalies have been described. Here, we report on a 15-year-old girl with a severe form of CCA and novel biallelic variants in FBN2. The girl inherited the missense variant c.3563G > T/p.(Gly1188Val) from her unaffected father and the nonsense variant c.6831C > A/p.(Cys2277*) from her healthy mother. We could detect only a small amount of FBN2 transcripts harboring the nonsense variant in leukocyte-derived mRNA from the patient and mother suggesting nonsense-mediated mRNA decay. As the father did not show any clinical signs of CCA we hypothesize the missense variant c.3563G > T to be a hypomorphic allele. Taken together, our data suggests that severe CCA can be inherited in an autosomal-recessive manner by compound heterozygosity of a hypomorphic and a null allele of the FBN2 gene.


Subject(s)
Arachnodactyly/genetics , Contracture/genetics , Fibrillin-2/genetics , Adolescent , Alleles , Arachnodactyly/pathology , Contracture/pathology , Female , Humans , Mutation
10.
Genet Med ; 23(6): 1050-1057, 2021 06.
Article in English | MEDLINE | ID: mdl-33495529

ABSTRACT

PURPOSE: To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. METHODS: Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19G28R and CDK19Y32H. RESULTS: We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). CONCLUSION: CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Animals , Cyclin-Dependent Kinases/genetics , Gain of Function Mutation , Humans , Infant , Mutation, Missense , Zebrafish/genetics
11.
Clin Genet ; 98(4): 418-419, 2020 10.
Article in English | MEDLINE | ID: mdl-33294970

ABSTRACT

The clinical impact of duplications affecting the 11p15.5 region is difficult to predict, and depends on the parent-of-origin of the affected allele as well as on the type (deletion, duplication), the extent and genomic content of the variant. Three unrelated families with inheritance of duplications affecting the IC1 region in 11p15.5 through two generations but different phenotypes (Beckwith-Wiedemann and Silver-Russell syndromes, normal phenotype) are reported. The inconsistent phenotypic patterns of carriers of the same variant strongly indicate the impact of cis- and/or trans-acting modifiers on the clinical outcome of IC1 duplication carriers.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , Genetic Predisposition to Disease , Insulin-Like Growth Factor II/genetics , RNA, Long Noncoding/genetics , Silver-Russell Syndrome/genetics , Alleles , Beckwith-Wiedemann Syndrome/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosome Duplication/genetics , Chromosomes, Human, Pair 11/genetics , Female , Genomic Imprinting/genetics , Humans , Infant , Infant, Newborn , Male , Phenotype , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/pathology
12.
Eur J Med Genet ; 63(9): 103992, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32590105

ABSTRACT

GBA2 associated spastic paraplegia type 46 (SPG46) is an autosomal-recessive disorder associated with a clinical presentation of spastic gait, muscle weakness as well as an array of clinical symptoms including pseudobulbar palsy and progressive cognitive decline. Several neurological and non-neurological symptoms are associated with GBA2 mutations. An initial presentation with dystonia has not been reported so far. We report clinical, genetic and brain imaging findings in two siblings with hereditary spastic paraparesis. One sister presented with juvenile-onset leg spasticity and progressed to spastic tetraparesis, cervical and jaw opening dystonia, pseudobulbar symptoms and dementia. The other sister initially developed cervical dystonia in adulthood followed by gait spasticity and cognitive decline in the disease course. Molecular genetic testing revealed novel compound heterozygous variants in GBA2 in both sisters. The initial presentation with cervical dystonia and the differing clinical disease progression expand the clinical phenotype of GBA2 associated SPG46.


Subject(s)
Cognitive Dysfunction/genetics , Dystonia/genetics , Glucosylceramidase/genetics , Mutation , Phenotype , Spastic Paraplegia, Hereditary/genetics , Adult , Cognitive Dysfunction/pathology , Dystonia/pathology , Female , Glucosylceramidase/chemistry , Heterozygote , Humans , Pedigree , Spastic Paraplegia, Hereditary/pathology
13.
Eur J Hum Genet ; 28(10): 1422-1431, 2020 10.
Article in English | MEDLINE | ID: mdl-32483341

ABSTRACT

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.


Subject(s)
Craniofacial Abnormalities/genetics , DNA Helicases/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Adolescent , Adult , Catalytic Domain , Child , Child, Preschool , Craniofacial Abnormalities/pathology , DNA Helicases/chemistry , Developmental Disabilities/pathology , Female , Humans , Infant , Intellectual Disability/pathology , Male , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mutation , Phenotype , Syndrome
14.
J Neurochem ; 155(3): 250-263, 2020 11.
Article in English | MEDLINE | ID: mdl-32202324

ABSTRACT

Mutations in SHANK3, coding for a large scaffold protein of excitatory synapses in the CNS, are associated with neurodevelopmental disorders including autism spectrum disorders and intellectual disability (ID). Several cases have been identified in which the mutation leads to truncation of the protein, eliminating C-terminal sequences required for post-synaptic targeting of the protein. We identify here a patient with a truncating mutation in SHANK3, affected by severe global developmental delay and intellectual disability. By analyzing the subcellular distribution of this truncated form of Shank3, we identified a nuclear localization signal (NLS) in the N-terminal part of the protein which is responsible for targeting Shank3 fragments to the nucleus. To determine the relevance of Shank3 for nuclear signaling, we analyze how it affects signaling by ß-catenin, a component of the Wnt pathway. We show that full length as well as truncated variants of Shank3 interact with ß-catenin via the PDZ domain of Shank3, and the armadillo repeats of ß-catenin. As a result of this interaction, truncated forms of Shank3 and ß-catenin strictly co-localize in small intra-nuclear bodies both in 293T cells and in rat hippocampal neurons. On a functional level, the sequestration of both proteins in these nuclear bodies is associated with a strongly repressed transcriptional activation by ß-catenin owing to interaction with the truncated Shank3 fragment found in patients. Our data suggest that truncating mutations in SHANK3 may not only lead to a reduction in Shank3 protein available at postsynaptic sites but also negatively affect the Wnt signaling pathway.


Subject(s)
Cell Nucleus/metabolism , Developmental Disabilities/metabolism , Mutation/physiology , Nerve Tissue Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Nucleus/genetics , Cells, Cultured , Developmental Disabilities/genetics , Female , HEK293 Cells , Humans , Male , Nerve Tissue Proteins/genetics , Pregnancy , Rats , Rats, Wistar , Signal Transduction/physiology
15.
J Pediatr Genet ; 8(4): 222-225, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31687261

ABSTRACT

Recently, mutations in the PLPBP gene were described as a novel cause for vitamin B6-responsive epilepsy. We report the outcome in case of a male adolescent with a novel homozygous missense variant in PLPBP who was never treated with pyridoxine until the age of 16 years. He presented with only mild cognitive impairment and an early-onset, well-controlled epilepsy. In our patient, excessive seizure clusters and anxiety states occurred intermittently, suggesting that the combination might be a hallmark in untreated patients. Thus, mutations in PLPBP should be addressed even in adolescent patients with only mild learning disabilities and relatively good seizure control over the years.

16.
Clin Genet ; 96(1): 85-90, 2019 07.
Article in English | MEDLINE | ID: mdl-31044419

ABSTRACT

Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS), a rare condition that affects smooth muscle cells, is caused by biallelic null alleles in MYH11. We report on a girl with MMIHS in addition to growth hormone deficiency, central hypothyroidism and a tonically dilated pupil with accommodation deficit. Sanger sequencing and arrayCGH uncovered the novel heterozygous missense variant c.379C>T in MYH11 and a heterozygous 1.3 Mb deletion in 16q13.11 encompassing MYH11, respectively. Her mother carries the deletion, whereas her father is heterozygous for the c.379C>T p.(Pro127Ser) change. Proline 127 is crucial for the formation of the Adenosine triphosphate binding pocket of the MYH11 motor domain and molecular modeling indicated that p.Pro127Ser alters nucleotide binding properties. Thus, the unusual and complex clinical presentation of the patient results from compound heterozygosity for a 16p13.11 microdeletion including the entire MYH11 gene and a loss-of-function missense variant on the remaining MYH11 allele. In conclusion, we recommend genetic testing both for MYH11 sequence alterations and copy number imbalances in individuals with MMIHS and smooth muscle cell-associated abnormalities in additional organs, that is, multisystemic smooth muscle dysfunction.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16 , Colon/abnormalities , Intestinal Pseudo-Obstruction/diagnosis , Intestinal Pseudo-Obstruction/genetics , Loss of Function Mutation , Mutation, Missense , Myosin Heavy Chains/genetics , Urinary Bladder/abnormalities , Amino Acid Sequence , Child , Female , Genetic Association Studies , Genetic Predisposition to Disease , Heterozygote , Humans , Immunohistochemistry , Mutation , Myosin Heavy Chains/chemistry , Phenotype , Protein Conformation
17.
Dtsch Arztebl Int ; 116(12): 197-204, 2019 03 22.
Article in English | MEDLINE | ID: mdl-31056085

ABSTRACT

BACKGROUND: In developed countries, global developmental disorders are encounter- ed in approximately 1% of all children. The causes are manifold, and no exogenous cause can be identified in about half of the affected children. The parallel investi- gation of the coding sequences of all genes of the affected individual (whole exome sequencing, WES) has developed into a successful diagnostic method for identify- ing the cause of the problem. It is not yet clear, however, when WES should best be used in routine clinical practice in order to exploit the potential of this method to the fullest. METHODS: In an interdisciplinary study, we carried out standardized clinical pheno- typing and a systematic genetic analysis (WES of the index patient and his or her parents, so-called trio WES) in 50 children with developmental disturbances of unclear etiology and with nonspecific neurological manifestations. RESULTS: In 21 children (42% of the collective), we were able to identify the cause of the disorder by demonstrating a mutation in a gene known to be associated with disease. Three of these children subsequently underwent specific treatment. In 22 other children (44%), we detected possibly etiological changes in candidate genes not currently known to be associated with human disease. CONCLUSION: Our detection rate of at least 42% is high in comparison with the results obtained in other studies from Germany and other countries to date and implies that WES can be used to good effect as a differential diagnostic tool in pediatric neurol- ogy. WES should be carried out in both the index patient and his or her parents (trio- WES) and accompanied by close interdisciplinary collaboration of human geneti- cists and pediatricians, by comprehensive and targeted phenotyping (also after the diagnosis is established), and by the meticulous evaluation of all gene variants.


Subject(s)
Exome Sequencing , Child , Germany , Humans
18.
BMC Med Genet ; 20(1): 62, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30961538

ABSTRACT

BACKGROUND: Reports on autosomal recessive optic atrophy (arOA) are sparse and so far, only one gene has been specifically associated with non-syndromic arOA, namely TMEM126A. To date, all reports of pathogenic TMEM126A variants are from affected individuals of Maghrebian origin, who all carry an identical nonsense variant. Here we report two novel variants in the TMEM126A gene from non-Maghreb individuals, both found in affected individuals with an arOA phenotype. CASE PRESENTATION: We report three affected individuals from two families. The proband of family A, a 24-year-old Turkish woman, was diagnosed with visual loss in early childhood but a diagnosis of optic atrophy was only made at 14 years. A diagnostic gene panel revealed a splice donor variant (c.86 + 2 T > C) in homozygous state in the TMEM126A gene. Analysis of this variant based on RNA from whole blood revealed a single aberrant transcript lacking exon 2, presumably representing a functional null allele. Two siblings from family B, a 16-year old Iraqi girl and her 14-year old brother, were diagnosed with optic atrophy in early childhood. A missense variant p.(S36 L) in the TMEM126A gene was identified in homozygous state in a gene panel-based diagnostic setting in both siblings. This missense variant is ultra rare in the general population, affects a highly evolutionarily conserved amino acid and segregates with the disease within the family. The three probands reported in this study had a relatively mild clinical course without any evidence of a syndromic (e.g. neurological) comorbidity, which is in line with previous studies. CONCLUSIONS: We provide additional evidence for the implication of biallelic pathogenic TMEM126A variants in arOA. Our findings extend both the mutational spectrum and geographic presence of TMEM126A in arOA. Screening of the entire gene should be considered in affected individuals presenting with features resembling arOA and also from non-Maghrebian descent.


Subject(s)
Genes, Recessive , Membrane Proteins/genetics , Optic Atrophy/genetics , Adolescent , Codon, Nonsense , Female , Humans , Male , Young Adult
19.
Hum Genet ; 138(6): 625-634, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30963242

ABSTRACT

Rare heterozygous variants in SMAD6 have been identified as a significant genetic contributor to bicuspid aortic valve-associated thoracic aortic aneurysm on one hand and non-syndromic midline craniosynostosis on the other. In this study, we report two individuals with biallelic missense variants in SMAD6 and a complex cardiac phenotype. Trio exome sequencing in Proband 1, a male who had aortic isthmus stenosis, revealed the homozygous SMAD6 variant p.(Ile466Thr). He also had mild intellectual disability and radio-ulnar synostosis. Proband 2 is a female who presented with a more severe cardiac phenotype with a dysplastic and stenotic pulmonary valve and dilated cardiomyopathy. In addition, she had vascular anomalies, including a stenotic left main coronary artery requiring a bypass procedure, narrowing of the proximal left pulmonary artery and a venous anomaly in the brain. Proband 2 has compound heterozygous SMAD6 missense variants, p.(Phe357Ile) and p.(Ser483Pro). Absence of these SMAD6 variants in the general population and high pathogenicity prediction scores suggest that these variants caused the probands' phenotypes. This is further corroborated by cardiovascular anomalies and appendicular skeletal defects in Smad6-deficient mice. SMAD6 acts as an inhibitory SMAD and preferentially inhibits bone morphogenetic protein (BMP)-induced signaling. Our data suggest that biallelic variants in SMAD6 may affect the inhibitory activity of SMAD6 and cause enhanced BMP signaling underlying the cardiovascular anomalies and possibly other clinical features in the two probands.


Subject(s)
Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Mutation, Missense , Smad6 Protein/genetics , Alleles , Animals , Cardiovascular Diseases/pathology , Child, Preschool , Female , Genotype , Humans , Male , Mice , Phenotype , Exome Sequencing/methods
20.
Genet Med ; 21(8): 1832-1841, 2019 08.
Article in English | MEDLINE | ID: mdl-30675029

ABSTRACT

PURPOSE: Heritable factors play an important etiologic role in connective tissue disorders (CTD) with vascular involvement, and a genetic diagnosis is getting increasingly important for gene-tailored, personalized patient management. METHODS: We analyzed 32 disease-associated genes by using targeted next-generation sequencing and exome sequencing in a clinically relevant cohort of 199 individuals. We classified and refined sequence variants according to their likelihood for pathogenicity. RESULTS: We identified 1 pathogenic variant (PV; in FBN1 or SMAD3) in 15 patients (7.5%) and ≥1 likely pathogenic variant (LPV; in COL3A1, FBN1, FBN2, LOX, MYH11, SMAD3, TGFBR1, or TGFBR2) in 19 individuals (9.6%), together resulting in 17.1% diagnostic yield. Thirteen PV/LPV were novel. Of PV/LPV-negative patients 47 (23.6%) showed ≥1 variant of uncertain significance (VUS). Twenty-five patients had concomitant variants. In-depth evaluation of reported/calculated variant classes resulted in reclassification of 19.8% of variants. CONCLUSION: Variant classification and refinement are essential for shaping mutational spectra of disease genes, thereby improving clinical sensitivity. Obligate stringent multigene analysis is a powerful tool for identifying genetic causes of clinically related CTDs. Nonetheless, the relatively high rate of PV/LPV/VUS-negative patients underscores the existence of yet unknown disease loci and/or oligogenic/polygenic inheritance.


Subject(s)
Aorta/physiopathology , Connective Tissue Diseases/genetics , High-Throughput Nucleotide Sequencing , Marfan Syndrome/genetics , Adult , Aorta/metabolism , Biomarkers/metabolism , Cohort Studies , Connective Tissue/metabolism , Connective Tissue/pathology , Connective Tissue Diseases/physiopathology , Female , Genetic Testing , Humans , Male , Marfan Syndrome/diagnosis , Marfan Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...